Chain Linked Lactic Acid Polymers: Polymerization and Biodegradation Studies
نویسنده
چکیده
The two-step polymerization method, including polycondensation and chain linking reactions, was conducted to obtain high-molecular-weight lactic acid polymers. The biodegradability of these polymers was subsequently investigated. Three polymerization routes were studied. Hydroxyl-terminated prepolymers were linked with diisocyanates, 1,6-hexamethylene diisocyanate (HMDI) or 1,4-butane diisocyanate (BDI), to produce poly(ester-urethanes) (PEU). Carboxyl-terminated prepolymers were linked with 2,2’-bis(2-oxazoline) (BOX) to produce poly(ester-amides) (PEA). In addition, lactic acid oligomers having both carboxyl and hydroxyl end-groups were linked, with sequential or simultaneous addition of HMDI and BOX, to produce both urethane and oxamide bonds in the lactic acid polymer (PEUA). The structures of novel chain linked lactic acid polymers were identified and the polymerization behavior of carboxyland hydroxyl-reactive chain extenders with prepolymers was carefully evaluated with the use of SEC, NMR, and FTIR. BOX was found to be simultaneously an effective chain coupling agent and acid value reducer for lactic acid based prepolymer, whilst also increasing the thermal stability of PLA polymers. Side-reactions were detected, which can be utilized to obtain branches and crosslinks to PEU and PEUA during chain linking polymerizations. Amide groups, formed in the reaction between HMDI and the COOH group, played an important role in the branching and crosslinking, rather than the oxamide or urethane groups. Also, the mode of addition of chain extenders had a considerable effect on the branching. The biodegradability of lactic acid polymers prepared by chain linking was demonstrated using hydrolysis and a controlled compost test. The quality of the compost after biodegradation was evaluated with biotests. All the polymers biodegraded to over 90% of the positive control in six months, which is the limit set by the CEN standard. Toxicity was detected with the Flash test and plant growth tests in PEU samples, where chain linking of lactic acid oligomers had been carried out with 1,6-hexamethylene diisocyanate. All other polymers showed no toxicological effect. The results clearly showed that 1,6-hexamethylene diisocyanate should not be used as a building block in biodegradable polymers on account of the environmental risk.
منابع مشابه
Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
A series of lactic/glycolic acid polymers with various molar ratios of lactic to glycolic acid and various molecular weights were synthesized using the ring-opening polymerization method. The polymerization conditions for the lactic/glycolic acid polymer synthesis were as follows: 150 degrees C, 700 microm Hg, 3 h, 0.03 wt% of catalyst (stannous 2-ethyl-hexanoate) concentration. The molecular w...
متن کاملSynthesis of some network polymers with siloxane units as a drug delivery system
New biodegradable network polymers containing siloxane-linked polymeric prodrugs of 5-ammino-2-hydroxybenzoic acid (5-ASA) in the main chain were prepared by ter polymerization of methacrylic acid (MA), 2-hydroxyethylmethacrylate (HEMA), and bis (trimethylsilyloxy) methylsilane (VBM) in the presence of some new cross-linking agents.The monomers and polymers were characterized by FT-IR and 1H-NM...
متن کاملSynthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
A series of previously-synthesized lactic/glycolic acid polymers (PLGA) with various molar ratios of lactic to glycolic acid and various molecular weights were further studied with regard to their biodegradation behavior, and in particular, the factors affecting the biodegradation rate. The biodegradation of PLGA is affected by many factors including polymer composition, molecular weight, and n...
متن کاملA Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate
A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...
متن کاملBranched and Crosslinked Resorbable Polymers Based on Lactic Acid, Lactide and Ε-caprolactone
Branched and crosslinked degradable polyesters based on lactic acid, lactide and εcaprolactone were prepared by utilizing different polymerization methods. Chain linking of hydroxyl telechelic lactic acid oligomers with 1,6-hexamethylene diisocyanate (HMDI) as a chain extender, yielded lactic acid based poly(ester-urethanes). When an excess of HMDI was used, polymers with broader molecular weig...
متن کامل